笔记笔记
  • Home
  • AI&ML
  • Example
  • Zoo
  • 关于
⌘ K
介绍
全部
通用
Button 按钮
反馈
模态弹窗
demo
dumi demo
Ant Design Demo
KaTeX Demo
UML Demo
Function Plot
简单函数曲线
图表
自动 API 表格
最后更新时间:
Copyright © 2023-2024 | Powered by dumi | GuoDapeng | 冀ICP备20004032号-1 | 冀公网安备 冀公网安备 13024002000293号

TABLE OF CONTENTS

‌
‌
‌
‌

KaTeX Demo

引入 KaTeX

KaTeX

react-katex

yarn add react-katex

Demo

测试例子

例子来自 高等教育出版社《高等数学》第七版·上册 216 页。ISBN 978-7-04-039663-8。

另一种等号对齐的例子

更多例子

Resources
katex.md
求
∫1+sin⁡xsin⁡x(1+cos⁡x)dx \int{\frac{1+\sin{x}}{\sin{x}(1+\cos{x})}dx} ∫sinx(1+cosx)1+sinx​dx
解 由三角函数知道,
sin⁡x \sin{x} sinx
与
cos⁡x \cos{x} cosx
都可以用
tan⁡x2 \tan{\frac{x}{2}} tan2x​
的有理式表示,即
sin⁡x=2sin⁡x2cos⁡x2=2tan⁡x2sec⁡2x2=2tan⁡x21+tan⁡2x2, \sin{x} = 2\sin{\frac{x}{2}}\cos{\frac{x}{2}} = \frac{2\tan{\frac{x}{2}}}{\sec^2{\frac{x}{2}}} = \frac{2\tan{\frac{x}{2}}}{1+\tan^2{\frac{x}{2}}}, sinx=2sin2x​cos2x​=sec22x​2tan2x​​=1+tan22x​2tan2x​​,
cos⁡x=cos⁡2x2−sin⁡2x2=1−tan⁡2x2sec⁡2x2=1−tan⁡2x21+tan⁡2x2. \cos{x} = \cos^2{\frac{x}{2}} - \sin^2{\frac{x}{2}} = \frac{1-\tan^2{\frac{x}{2}}}{\sec^2{\frac{x}{2}}} = \frac{1-\tan^2{\frac{x}{2}}}{1+\tan^2{\frac{x}{2}}}. cosx=cos22x​−sin22x​=sec22x​1−tan22x​​=1+tan22x​1−tan22x​​.
如果作变换
u=tan⁡x2 (−π<x<π)① u = \tan{\frac{x}{2}} \space \lparen-\pi<x<\pi\rparen^① u=tan2x​ (−π<x<π)①
,那么
sin⁡x=2u1+u2, cos⁡x=1−u21+u2, \sin{x} = \frac{2u}{1+u^2}, \space \cos{x} = \frac{1-u^2}{1+u^2}, sinx=1+u22u​, cosx=1+u21−u2​,
而
x=2arctan⁡u x = 2\arctan{u} x=2arctanu
,从而
dx=21+u2du. dx = \frac{2}{1+u^2}du. dx=1+u22​du.
于是
∫1+sin⁡xsin⁡x(1+cos⁡x)dx=∫(1+2u1+u2)2du1+u22u1+u2(1+1−u21+u2)=12∫(u+2+1u)du=12(u22+2u+ln⁡∣u∣)+C=14tan⁡2x2+tan⁡x2+12ln⁡∣tan⁡x2∣+C. \begin{align*} &\int{\frac{1+\sin{x}}{\sin{x(1+\cos{x})}}}dx \newline =&\int{\frac{\Big(1+\frac{2u}{1+u^2}\Big)\frac{2du}{1+u^2}}{\frac{2u}{1+u^2}\Big(1+\frac{1-u^2}{1+u^2}\Big)}} =\frac{1}{2}\int{\Big(u+2+\frac{1}{u}\Big)}du \newline =&\frac{1}{2}\Big(\frac{u^2}{2}+2u+\ln|u|\Big)+C =\frac{1}{4}\tan^2{\frac{x}{2}}+\tan{\frac{x}{2}}+\frac{1}{2}\ln\Big|\tan{\frac{x}{2}}\Big|+C. \end{align*} ==​∫sinx(1+cosx)1+sinx​dx∫1+u22u​(1+1+u21−u2​)(1+1+u22u​)1+u22du​​=21​∫(u+2+u1​)du21​(2u2​+2u+ln∣u∣)+C=41​tan22x​+tan2x​+21​ln​tan2x​​+C.​
本例所用的变量代换
u=tan⁡x2 u = \tan{\frac{x}{2}} u=tan2x​
对三角函数有理式的积分都可以应用.
① 当
x∈((2k−1)π,(2k+1)π) x\in((2k-1)\pi,(2k+1)\pi) x∈((2k−1)π,(2k+1)π)
时,作变换
u=tan⁡x−2kπ2=tan⁡x2,x=2kπ+2arctan⁡u u = \tan{\frac{x-2k\pi}{2}} = \tan{\frac{x}{2}},x = 2k\pi+2\arctan{u} u=tan2x−2kπ​=tan2x​,x=2kπ+2arctanu
,以下所得结果相同.
x+1=y+2=z+3=w+4 \begin{align*} x+1 &= y+2 \newline &= z+3 \newline &= w+4 \end{align*} x+1​=y+2=z+3=w+4​
lim⁡x→0sin⁡2xx=2lim⁡x→0sin⁡2x2x=2 \begin{align*} &\lim\limits_{x\to0}\frac{\sin{2x}}{x} \newline =& 2\lim\limits_{x\to0}\frac{\sin{2x}}{2x} \newline =& 2 \end{align*} ==​x→0lim​xsin2x​2x→0lim​2xsin2x​2​
lim⁡x→1x2−4x+3x2−5x+4=lim⁡x→1(x−1)(x−3)(x−1)(x−4)=lim⁡x→1x−3x−4=23 \begin{align*} &\lim\limits_{x\to1}\frac{x^2-4x+3}{x^2-5x+4} \newline =& \lim\limits_{x\to1}\frac{(x-1)(x-3)}{(x-1)(x-4)} \newline =& \lim\limits_{x\to1}\frac{x-3}{x-4} \newline =& \frac{2}{3} \newline \end{align*} ===​x→1lim​x2−5x+4x2−4x+3​x→1lim​(x−1)(x−4)(x−1)(x−3)​x→1lim​x−4x−3​32​​
lim⁡x→0x+9−3x=lim⁡x→0(x+9−3)(x+9+3)x(x+9+3)=lim⁡x→01x+9+3=16 \begin{align*} &\lim\limits_{x\to0}\frac{\sqrt{x+9}-3}{x} \newline =& \lim\limits_{x\to0}\frac{(\sqrt{x+9}-3)(\sqrt{x+9}+3)}{x(\sqrt{x+9}+3)} \newline =& \lim\limits_{x\to0}\frac{1}{\sqrt{x+9}+3} \newline =& \frac{1}{6} \newline \end{align*} ===​x→0lim​xx+9​−3​x→0lim​x(x+9​+3)(x+9​−3)(x+9​+3)​x→0lim​x+9​+31​61​​
lim⁡x→∞(1+3x)x=lim⁡x→∞(1+1x3)x=lim⁡x→∞[(1+1x3)x3]3=e3 \begin{align*} &\lim\limits_{x\to\infin}(1+\frac{3}{x})^x \newline =& \lim\limits_{x\to\infin}(1+\frac{1}{\frac{x}{3}})^x \newline =& \lim\limits_{x\to\infin}\bigg[(1+\frac{1}{\frac{x}{3}})^\frac{x}{3}\bigg]^3 \newline =& e^3 \newline \end{align*} ===​x→∞lim​(1+x3​)xx→∞lim​(1+3x​1​)xx→∞lim​[(1+3x​1​)3x​]3e3​
y′=6x2+5 y'=6x^2+5 y′=6x2+5
把 y 看作常量,对 x 求导,得
∂z∂x=2x \frac{\partial z}{\partial x}=2x ∂x∂z​=2x
把 x 看作常量,对 y 求导,得
∂z∂y=2y \frac{\partial z}{\partial y}=2y ∂y∂z​=2y
∫(x2+cosx)dx=∫x2dx+∫cosxdx=13x3+sinx+c \begin{align*} &\int{(x^2+cos{x})dx} \newline =& \int{x^2dx}+\int{cos{x}dx} \newline =& \frac{1}{3}x^3+sin{x}+c \newline \end{align*} ==​∫(x2+cosx)dx∫x2dx+∫cosxdx31​x3+sinx+c​
∫ln⁡xxdx=∫ln⁡xd(ln⁡x)=12ln⁡2x+c \begin{align*} &\int{\frac{\ln{x}}{x}dx} \newline =& \int{\ln{xd}(\ln{x})} \newline =& \frac{1}{2}\ln^2{x}+c \newline \end{align*} ==​∫xlnx​dx∫lnxd(lnx)21​ln2x+c​
∫01e2xdx=12e2x∣01=12(e2−e0)=12(e2−1) \begin{align*} &\int_0^1{e^{2x}dx} \newline =& \frac{1}{2}e^{2x}\big\vert_0^1 \newline =& \frac{1}{2}(e^2-e^0) \newline =& \frac{1}{2}(e^2-1) \newline \end{align*} ===​∫01​e2xdx21​e2x​01​21​(e2−e0)21​(e2−1)​
解方程组
{y=x2x=2 \begin{cases} y = x^2 \newline x = 2 \newline \end{cases} {y=x2x=2​
得交点
(2,4) (2,4) (2,4)
以
x x x
为积分变量,积分区间为
[0,2] [0,2] [0,2]
则所求面积为:
S=∫02x2dx=(13x3)∣02=83 \begin{align*} S=& \int_0^2{x^{2}dx}=(\frac{1}{3}x^3)\big\vert_0^2 \newline =& \frac{8}{3} \end{align*} S==​∫02​x2dx=(31​x3)​02​38​​